
ELEN449-504 - Microprocessor System Design

LAB 7 -- Serial Communications using the 6850 ACIA

Chris Washington

ELEN 449 - 504

October 11, 2000
Design

An organized design method proved to be the most valuable asset in completing this lab. Once I understood the problem correctly, I began by making a detailed flow chart (shown below) to organize the major actions in the solution to this problem.

I began by assigning all registers and strings that I would need in my program. I then complete the simpler subroutines such as the ACIA interface, delay, counter, initialization routine, and character handler. The most complicated aspect between these subroutines was designing the proper routing from one action to another. Since there would not always be a set path for the program to follow, it was necessary to ensure that each subroutine was called at the proper time and that the embedded subroutines were placed correctly so that they would return properly with the correct data.

Next I worked out my data display algorithms on paper to organize my thoughts and then turned them into assembly code using my predefined 'variables'. The Raw Data Display and Voltage Display proved to be fairly tricky since the 68000 does not support floating-point operations and since the string length of the two output types would vary. To compensate for the varying length, I used and set data space after the mode label to allow me to write either data type to the same screen location, thus avoiding the need to rewrite the mode label for each data change. Since the raw data could display one or two characters, it was also necessary to compensate for the spaces required to format the data. The voltage data display was also a complex issue since the 68000 cannot hold a decimal value which most of these values are. To allow for this, I multiplied the actual voltage value by 10 to get a one- or two-digit number to be displayed to the screen. If I received a one digit number, then the voltage is less than zero so I displayed a ‘0’ to the screen followed by a ‘.’ before displaying the resulting character. If the result is a two-digit number, the first digit is displayed, followed by a ‘.’, and lastly the second digit resulting from the raw data to voltage algorithm is displayed.

Another tricky subroutine was the mode label display. To accomplish this, I used pointers to the respective strings (which are the same length, 20 characters), which were then displayed to the screen one character at a time using a loop and the output interface with the 68000's ACIA. Once these labels are displayed, they will remain on the screen until the mode changes. To display the changes in data without rewriting the labels, I used the ASCII character for backspace to write-over the old value. When the display mode changes, then the ASCII character for carriage return is used to move to the beginning of the line and rewrite the label. The program then jumps to the display data subroutine to change the data to the appropriate format. A flag was used to hold the current display mode and determine the proper data display format. When a request to change mode is received, the flag is changed followed by the label and then finally the data.

To acquire these requests, the program polls the 68000's ACIA to see if a keystroke has been received. If there has been a keystroke, then the keystroke handling routine determines if the character is valid and jumps to the appropriate subroutine. If it is an invalid keystroke, then the program will ignore it and continue as if there was no keystroke. This same polling method is used to output characters to the screen with the exception that the program will continue to poll the ACIA until the character is displayed as opposed to continuing if the device is not ready.

Instead of an actual voltmeter, an internal counter is used to mimic the data that would be received by the program for the external ACIA. This counter increment’s from 0 to 255 and then returns to 0. If the keystroke is input to clear this counter, it is cleared immediately and the data is adjusted accordingly.

To exit this program, the proper keystroke is entered and the program will terminate and return to TUTOR.

This program is very complex and required an organized design, a deep understanding of the problem and the tools available to solve it, and most importantly, tedious debugging skills to remedy the numerous kinks in the syntax and logic.

Programs and Schematics

Questions

1. Explain the differences between a POLLING method and an INTERRUPT method to communicate with the ACIA (answer thoroughly).

Using a polling method to communicate with the ACIA, as was done in this lab, eliminates the need for interrupts. When polling the ACIA, the program checks the specified signal (status bit) of the ACIA to see if the device is 'ready' for the operation (receive/transfer). It does this by comparing the bit to the desired value for action. The program uses a loop to continually check (poll) this bit until the action can be completed.

The interrupt method eliminates the loop since the device will send an interrupt to the processor when it is ready to complete the action (transmit/receive). For example, when the ACIA receives data (i.e. a keystroke), it sends an interrupt that is handled by an interrupt handler. This interrupt handler will recognize that the ACIA is ready and waiting and process the desired action at that point (i.e. process the keystroke). In the same way, when the ACIA is sent data to transmit, it will send an interrupt to the processor who will then process the action (i.e. display the output) when the ACIA interrupt level becomes the highest priority interrupt.

Using the polling method, the device will simply wait once it is ready, until the program recognized that it is ready and completes the action. A device using the interrupt method will signal when it is ready.

2. What suggestions do you have for improving the lab and/or the lab manual for next semester?

To improve the lab I would suggest more hardware interface labs, since as an electrical engineer one would be more interested in the hardware interface. However, this may be a personal preference. Also, as is already know, the equipment does not work at all stations for every lab, so an improvement in that area would also be beneficial. Overall, I felt the labs were very challenging and that the lab manual was excellent. It was very nice to have it posted on the Internet.

Conclusions

This lab has been an excellent final lab bringing together all aspects of this course into one design. Although there was no external hardware interface, the combination of the internal ACIA with the program allowed for a reinforcement of the relationship between the hardware and software aspects of a microprocessor system. This lab was very challenging, requiring organized use of modular programming to simplify the code for such a complex design as well as accurate understanding of the hardware interface with the program and peripherals of the system. The value of an effective design procedure using flowcharts, data sheets, and debugging techniques was very apparent in the completion of this assignment. I look forward to the opportunity to design even more complex systems in the future.

START

Key Stoke Detected

Initialization

 RD>&50

 V?

 R?

 C?

 Q?

 D0=0

Y

Y

Y

Y

Y

N

N

N

N

N

N

 END

Delay Loop

Counter Increment

Get Data from Counter

- Convert Raw Data to Voltage

- Display Voltage

- Change Display to 'Voltage = '

- Display Flag = 1

- Display Raw Data

- Change Display to 'Raw Data = '

- Display Flag = 0

Clear Counter

Return to TUTOR

Get Data from keyboard ACIA

Display Flag = 1

N

Y

- Convert Raw Data to Voltage

- Display Voltage

- Display Raw Data

 A5=A6

Get Raw Data (RD)

V = (50/255)*RD

HEX2DEC

RTS

V = (50/255)*RD

HEX2DEC

Display ‘0’

Display ‘.’

Display character

Display character

Display ‘.’

Display character

Display space

D0 = D0 - 1

HEX2DEC

D0 = 3 (total display spaces)

Display character

D0 = D0 – 1

A5 = A5 +1

RTS

N

Y

N

Y

Y

Raw Data Display Algorithm

Voltage Display Algorithm

Chris Washington
5
12/12/01

